Tutorial Notes 8

1. Suppose that $F=\nabla f$ is a conservative vector field and

$$
g(x, y, z)=\int_{(0,0,0)}^{(x, y, z)} F \cdot \mathrm{~d} r .
$$

Prove that $\nabla g=F$.

Solutions:

Since $g(x, y, z)=f(x, y, z)-f(0,0,0), \nabla g=\nabla f=F$.
2. (a) Find a potential function for the gravitational field

$$
F=-G m M\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) .
$$

(b) Let P_{1} and P_{2} are two points at distance s_{1} and s_{2} from the origin. Show that the work done by the gravitational field in moving a particle form P_{1} to P_{2} is $\operatorname{GmM}\left(s_{2}^{-1}-s_{1}^{-1}\right)$.

Solutions:

(a) For (x, y, z), calculate

$$
-\int_{\gamma} F \cdot \mathrm{~d} r
$$

where $\gamma(t)=(x t, y t, z t), 1 \leq t<\infty$, which is the candidate of the potential function. Then it is equal to

$$
\int_{1}^{\infty} \frac{G m M}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}} \cdot \frac{1}{t^{2}} \mathrm{~d} t=\frac{G m M}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}
$$

It is easy to see that $\operatorname{Gm} M\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ is a potential function.
(b) The work is the difference of the potential function, which is $\operatorname{GmM}\left(s_{2}^{-1}-s_{1}^{-1}\right)$.
3. Find the outward flux of the vector field

$$
\left(3 x y-\frac{x}{1+y^{2}}, \mathrm{e}^{x}+\arctan y\right)
$$

across the cardioid $r=a(1+\cos \theta)$.

Solutions:

The divergence is

$$
3 y-\frac{1}{1+y^{2}}+\frac{1}{1+y^{2}}=3 y
$$

By symmetry, the flux is 0 .
4. (a) Prove Green's area formula

$$
|\Omega|=\frac{1}{2} \int_{\partial \Omega}(x \mathrm{~d} y-y \mathrm{~d} x) .
$$

(b) Calculate the area of the region enclosed by the ellipse $\gamma(t)=(a \cos t, b \sin t)$, $0 \leq t \leq 2 \pi$.

Solutions:

(a) The curl of the vector field is 2 . Hence Green's area formula holds.
(b) It suffices to calculate

$$
\frac{1}{2} \int_{\gamma}(x \mathrm{~d} y-y \mathrm{~d} x)
$$

which is equal to

$$
\frac{1}{2} \int_{0}^{2 \pi}[a \cos t(b \cos t)-b \sin t(-a \sin t)] \mathrm{d} t=\pi a b
$$

5. C is a boundary of a region where Green's theorem holds. Calculate
(a)

$$
\int_{C}(f(x) \mathrm{d} x+g(y) \mathrm{d} y)
$$

(b)

$$
\int_{C}(k y \mathrm{~d} x+h x \mathrm{~d} y) .
$$

Solutions:

(a) Since the curl is

$$
[g(y)]_{x}-[f(x)]_{y}=0,
$$

the integral is 0 .
(b) Since the curl is

$$
(h x)_{x}-(k y)_{y}=h-k,
$$

the integral is $(h-k)|\Omega|$ where C is the boundary of Ω.

